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The common assumption that the energy of waves on a non-uniform current U 
is propagated with a velocity (U + cu) where cu is the group-velocity, and that 
no further interaction takes place, is shown in this paper to be incorrect. In  
fact the current does additional work on the waves at a rate ~ ~ ~ 8 , ~  where yij is 
the symmetric rate-of-strain tensor associated with the current, and S,, is the 
radiation stress tensor introduced earlier (Longuet-Higgins & Stewart 1960). 

In  the present paper we first obtain an asymptotic solution for the combined 
velocity potential in the simple case (1) when the non-uniform current U is in 
the direction of wave propagation and the horizontal variation of U is com- 
pensated by a vertical upwelling from below. The change in wave amplitude is 
shown to be such as would be found by inclusion of the radiation stress term. 

In  a second example (2) the current on the z-axis is assumed to be as in (l), 
but thehorizontalvariation in U is compensated by a small horizontal inflow from 
the sides. It is found that in that case the wave amplitude is also affected by 
the horizontal advection of wave energy from the sides. 

From cases (1) and (2) the general law of interaction between short waves and 
non-uniform currents is inferred. This is then applied to a third example (3) when 
waves encounter a current with vertical axis of shear, at an oblique angle. The 
change in wave amplitude is shown to differ somewhat from the previously 
accepted value. 

The conclusion that non-linear interactions affect the amplification of the 
waves has some bearing on the theoretical efficiency of hydraulic and pneumatic 
breakwaters. 

1. Introduction 
When short surface waves of any kind are propagated over the surface of a 

medium in steady but non-uniform motion, they tend to undergo refractive 
changes in length, direction and amplitude. The changes in length and direction 
depend on kinematical considerations only; a quite general treatment applicable 
to water waves has been given, for example, by Ursell (1960). But changes in 
the wave amplitude are less straightforward. Commonly (see Unna 1942; 
Suthons 1945; Johnson 1947; Evans 1955; Groen & Dorrestein 1958) it has been 
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assumed without justification that no coupling between the waves and current 
takes place, and that the wave energy is simply propagated with a velocity equal 
to (U + cg), where cg is the vector group-velocity and U the local stream velocity. 
On the contrary, in a recent paper (Longuet-Higgins & Stewart 1960; this paper 
will be referred to as I) ,  it was found that short gravity waves, riding on the backs 
of longer waves, are modified to a much greater extent than would be predicted 
if there were no interchange of energy between the short and the long waves. 
The discrepancy may be attributed to a term in the equation of energy transfer, 
called by us the radiation stress, and previously overlooked. The stress term occurs 
quite generally, and must give rise to changes in the wave amplitude in other 
situations besides the particular one that was considered. 

The purpose of the present paper is to study the changes in amplitude of gravity 
waves riding on steady but non-uniform currents. The subject is of special in- 
terest owing to its possible application to bubble-breakwaters, whose action is 
probably to be ascribed largely to the stopping power of a horizontal current 
opposing the waves (Taylor 1955; Evans 1955; Straub, Bowers & Tarrapore 
1959). Ocean waves entering tidal streams or crossing river flows are known to 
be subject to a similar effect (Unna 1942; Johnson 1947). Thefollowing discussion 
will be limited to the case of deep currents, that is to  say, those for which the 
change in current velocity in a vertical distance equal to the wavelength is small 
compared with the wave velocity itself. But quite similar results would apply to 
waves on shearing currents which penetrated to a depth of only a fraction of a 
wavelength. 

I n  our fist example we consider a system of waves superposed on a current 
which varies gradually in the x-direction (the direction of wave propagation), 
and in which the variation in surface current is made up by a vertical upwelling 
(or downwelling). The modification which the currents produce in the wave form 
is calculated rigorously by a perturbation method. It is found that, while the 
variation in the wave-number k is given by the expected formula 

the variation in the wave amplitude, on the other hand, is given by 

which is a higher rate of change than if there were no interaction between waves 
and currents. It is shown that this last result is consistent with the assumption 
that the equation governing the growth of wave energy E is 

a au 
&[E(CQ+ U)]+Xz- = 0, ax (1.3) 

where S, is the radiation stress mentioned earlier. (In deep water, S, = +E.) 
This is to say that in addition to the transport of energy by the group-velocity 
and stream velocity, the current does work on the waves at a rate ,S’,aU/i3x per 
unit distance. In  0 4, this conclusion is shown also to be consistent with our earlier 
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results in I concerning the steepening of surface waves on long waves or tidal 
streams. Integration of (1.3) leads to the result 

(1.4) 

In  our second example we consider a situation very similar to the first, but in 
which the increase in surface current U is made up, not by a vertical upwelling 
from below, but by a horizontal inflow from the sides. The results are strikingly 
different. Although the variation in wave-number is the same as in ( l . l ) ,  the 
variation in amplitude is now given by 

a cc [c(c + 2U)]-+. 

This is accounted for by including in the energy balance the advection of wave 
energy by the transverse current V ,  as well as the work done against the corre- 
sponding stress component (equation (6.4)). The amplitude a is now found 

be 

which is a weaker variation than in the previous case. 
The appropriate generalization of the equation of energy balance is shown to be 

where Sij denotes the radiation stress tensor. In  0 8 this is applied to a third 
example, that of waves crossing a shearing current obliquely. The changes in 
wavelength and direction of propagation 0 are as found by Johnson (1947), but 
the law governing the wave amplitude is shown to be 

a cc (sin 2s)-i, (1.8) 

which differs from Johnson’s result. 

2. Two-dimensional current: an asymptotic solution 
I n  this section we shall obtain a formal solution for surface waves on a non- 

uniform current U(z) which has no transverse component. The solution is to be 
valid when 

c-1- a u  < 1, 
ax 

where is the wave frequency; in other words, the change in stream velocity U 
over one wavelength L (that is, LaUIax) is assumed small compared with the 
wave velocity Lc/27~. 

General equations 

It will be supposed that the velocity field u is irrotational: 

that the fluid is incompressible: 
u = vq5; 

v.u = v=q5 = 0; (2.3) 
34-2 
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and that viscous effects are negligible. Then we have Bernoulli's integral 
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z+gz+*uz+- 34 = c, 
P at (2.4) 

where p ,  p, g denote the pressure, density and acceleration of gravity, and z is 
the vertical co-ordinate, directed upwards. Cis a constant. If z = [is the equation 
of the free surface, then for the two boundary conditions there are the kinematical 
condition 

and the condition of constant pressure, which by (2.4) may be written 

gg+ (p+;) = c. 
2-z; 

It is convenient to replace these last two equations by conditions to be satisfied 
at the mean surface level z = 0; this may be done by assuming the potential + 
to  be analytic and by expanding in a Taylor series in z :  

Lastly, we assume that the waves are effectively in deep water, so that as z -+ - GO 

the periodic part of the motion tends to zero. 

Form of the solution 
We seek a solution having the chrtracter of a time-periodic wave-motion super- 
imposed upon a non-uniform steady flow. Let us then substitute 

+ = uox + ( 4 0  +P+o1) + <a2+20 + .PA1 + P"02) + * * , 
Y =  ( 4 1 0  + PC-01) + (a2Y20 + @ClI + P"02) + - * 7 

where U, is a steady uniform velocity, the velocity of the stream at x = 0; q501 
represents a steady non-uniform current, zero at z = 0; and +lo represents an 
undisturbed surface wave; a and are arbitrary small parameters proportional 
to wave steepness and to the velocity gradient of the current respectively. The 
terms a2420, etc., are correction terms of higher order, necesmry in order to 
satisfy the boundary conditions at the free surface. We are particularly interested 
in evaluating the second-order term a/3411, which is the lowest-order interaction 
potential between the waves and the current. 

It may be worth remarking that to  eliminate the uniform current Uo by taking 
axes moving with velocity Uo would not be convenient, since in the new frame of 
reference the motion would no longer be perfectly periodic in time. This is 
because the modified wavelength is generally a function of x, as will be seen below. 
Clearly the choice of axes must be made so as to correspond with the physical 
problem; if the source of the wave-motion is periodic this determines the appro- 
priate frame of reference uniquely. 
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Retaining terms as far only as aP, we have from (2.8) 

v+ = ( G O ?  0) + "VAO + PV$Ol+ aP V A l ,  1 
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_ -  a+ - 
at 

W l O  

at 
a- 

+a/9 uo- a h 1  +- a+10 - V O l  +- a+10 - V O l  +- a+10 -- WOI) + . . .,} (2.10) ( ax ax ax ay ay aZ aZ 

Substitution in (2.7) shows at once that 

The terms in a now give 
C = &t7g 

to be satisfied at z = 0. On eliminating cl0, we have 

(;+u,;)24,,+g- a410 = 0 (z  = 0). 
a2 

(3.11) 

(2.12) 

(2.13) 

If we choose for the wave potential 

where A and ko are constants and 

then $lo satisfies Laplace's equation (2.3), and from (2.13) 

p = z+ ix ,  (2.15) 

(c- Uoko)2 = gko. (2.16) 

Introducing the reference velocity 

co = & P o )  

Y = Glco 

and the non-dimensional parameter 

we have from (2.16) fJ = cok,(l+y). 

(2.17) 

(2.18) 

(2.19) 

(To ensure continuity as y (or U,) tends to zero, we have adopted the positive 
sign in the square root.) From (2.12) and (2.19), we have also 

610 = - j  i a  [(z+Yco&) 010] = -(~10)2=0. i 
-0 co 

(2 .20 )  
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Returning to  equation (2.7)) we see that the terms in /3 give equations for 
formally identical with (2.12) except that the time derivatives are now zero: 

whence G = + g %  a241,1 = 0 (2  = 0). 

(2.21) 

(2.22) 

We require a potential to represent a steady flow having no transverse com- 
ponent a$,,/ay, which satisfies Laplace's equation, and also the condition 
(aq501/ax)~o = 0. Such a potential is 

#ol = c, Ic,(x2 - 22)  + Dc, 2, (2.23) 

where D is a constant to be determined. From (2.22)) 

D = -272. (2.24) 

(2.25) 

(2.26) 

I Therefore $ol = c, k,(x2 - 22)  - 2y%, 2 )  

c o 1 =  -2yx; 

_ -  a' a2q501 = Zpc, k ,  = 2/34 1 +?)-I also ax - P T  
in accordance with (2.1)) since /3 is assumed small. 

The interaction potential 

In equations (2.7) the terms in L$ yield 

to be satisfied when z = 0. (Note that a2QlOl/ataz = a2q501/axi3z = 0.) From these 
equations ell may be eliminated by applying the operator g-l(a/at + U,a/ax) to 
the second equation and then subtracting the first. Without substituting explicit 
expressions for $lo) $o17 cl0 and cOl but using (2.12) and (2.21) and the fact that 
aq5,,/az = k,q5,,, we obtain* 

Now, after substitution from (2.20) and (2.25)) the right-handside of this equation 

[2ikO( 1 - 27 - 2y2) - 4 k g ~ ]  #lo. (2.29) becomes 

* In the calculation of $11 the complex form of $lo can be used, since on the right of 
(2.28) only products involving and $ol occur, and $ol is real. 
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As a trial solution let us write 

$11 = 4k1q + la2) $10, (2.30) 

where q = z + iz and k,, I ,  are constants to be determined. Then the left-hand 
side of (2.28), when z = 0, reduces to 

[( 1 + 2y) i(kl + 2i@) - 2iy9f/ko] $lo. (2.31) 

On equating coefficients of and x#lo in (2.29) and (2.31) we obtain 

(2.32) 

The second of equations (2.27) also gives 

= [ ( ~ k ~ + 2 y 2 k o ) - ~ ~ ( 2 k ~ + 2 y ~ ~ - 2 y 1 ~ + k o ~ ~ ) + k o ~ ~ 2 1 C g ~ 1 0 .  (2.33) 

This then is a formal solution of our problem. 

Interpretation 
Combining (2.33) with (2.20),  we have 

Correct to order p, this expression may be written 

Now this represents a wave of slowly varying amplitude and wavelength. The 
local wave-number k is given by the x-derivative of the exponent: 

k = ko - 2 & ~ .  (2.36) 

The proportional rate of change of the wave-number at z = 0 is therefore 

by (2.32). From (2.19) this may be written 

The amplitude a of the wave is given by 

(2.37) 

(2.38) 

(2.39) 
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so that the proportional rate of increase is 
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by equation (2.32),  or, from (2.26),  

(2 .41)  

The mean surface level 

Equation (2 .25)  shows that there is a small change in the mean surface level 

(2 .42)  
given by 

corresponding to a mean gradient - 2py, as we should expect in a non-uniform 
flow. The additional terms aC10 + give no change in the mean level. Therefore 
to order a,!l the mean surface level is unaffected; only a t  higher approximations 
is any change apparent. 

K O 1  = --2PYX, 

3. A physical discussion 
We have seen that the interaction between the waves and the current can be 

interpreted as a distortion of the waves, resulting in a change of wavelength and 
amplitude. In  this section we shall try to interpret these changes on the basis of 
rough physical reasoning. 
As before, we denote by cr the angular frequency of the waves (constant over 

the whole field of motion) and by a, k ,  U ,  c the local wave amplitude, wave- 
number, stream velocity, and wave velocity relative to the stream. Our object 
is to obtain a, E and c as functions of U and of their values a,, E,, Uo, co in some 
fixed plane 2 = 0. 

The change in wavelength 

Consider first the variation in wavelength. Now, the apparent velocity of the 
waves relative to a fixed plane x = constant is equal to (c+ U ) .  The apparent 
angular frequency of the waves is therefore k(c+  77). But by hypothesis this 
quantity is equal to cr at all points, so that 

(3 .1)  k (c  + U )  = c = Eo(c0 + Uo). 

Thus k co+ Uo -- 5 -  C + U '  

But the waves being in deep water we expect that their velocities c, co relative 
to the current will be given by the classical formulae 

Combining (3.2) and (3 .3 ) ,  we have 
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where y = Uo/co as before. On differentiation with respect to x, we have 

and hence at x = 0, where c = co, 

1 au ac 
ax 1 + 2 y  a x *  

i a k  2ac 2 iau 
k a x  c a x  1 + 2 y c  ax 

- 

Since by (3.4) k varies as c - ~ ,  we have (by logarithmic differentiation) 

_ _  - - --- - 

in agreement with (2.38).  
It will be seen that equation (3.4) is a quadratic in c/co, and has the solution 

(see Unna (1942), for the case y = 0). I n  the square root, the positive sign has 
been taken to ensure continuity as x -+ 0. It is interesting to note that no solu- 
tion can exist when 

4(1 +Y) < 0, 1 +  
CO 

or 

(3.9) 

(3.10) 

that is to say, when the stream velocity is in the opposite direction and exceeds 
in magnitude about one-quarter of the initial phase velocity of the waves. At 
the critical point, when the radical vanishes, equation (3.8) shows that 

bnd so 

c 1 -=- 
co 2 ( 1 + Y ) ’  
u u c o  - -+. _ - _ _ -  - 
c co c 

(3.11) 

(3.12) 

I n  other words the stream velocity becomes equal and opposite to the local 
group-velocity +c; the wave energy can no longer be propagated against the 
stream. We shall see below that the waves tend to break before this point is 
reached. From (3 .8)  we have also 

(3.13) 

The changes in wave amplitude 

The change in wave amplitude is interesting, for it enables us to decide between 
various conflicting hypotheses. 

It was shown in I that if waves of amplitude a are propagated over a stream of 
uniform velocity U ,  the mean rate of energy transfer across a plane x = const. 
is given (to order a2) by 

zz = E(c, + U )  + 8, u + p u 2 / c  + 3phU3, (3.14) 
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where E denotes the wave energy per unit horizontal area: 
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E = Qpga2; 

c, denotes the group-velocity of the waves; in ‘deep’ water, 

(3.15) 

cg = +c = &/k; (3.16) 

h is the mean depth of the stream, and S, is defined by 

(3.17) 

The first term E(c,+ U) on the right-hand side of (3.14) represents simply the 
transfer of wave energy by the group-velocity plus the stream velocity, and is 
to be expected. The last two terms may be written together as 4 ~ h U ’ ~ ,  where 

U’ = U+E/pch (3.18) 

represents the mean stream velocity modified by the presence of the mass 
transport. The intermediate term S,U has been discussed in I. It represents 
a kind of coupling between the waves and the current. By analogy with the 
Reynolds stress, 8, has been called the ‘radiation stress ’. 

Now, in the present problem of waves on a non-uniform stream, let us suppose 
that the transfer of total energy is given with sufficient accuracy by equation 
(3.14) and further that between the planes x = 0 and z = const. there is no 
reflexion of wave energy. It follows then that 

- - 
3, = R, = const. (3.19) 

and so 
a -  
- R, = 0. ax (3.20) 

Equation (3.20) is merely an expression of the conservation of the energy, 
when dissipative mechanisms are ignored. However, it is possible to regard it 
as the sum of two equations, one representing the balance of wave energy and 
the other the balance of mean flow energy. 

For the exact form of this division, no unique answer is given by physical 
intuition. (At least OUT initial intuition, as well as that of Unna (1942), Evans 
(1955), Suthons (1945), Groen & Dorrestein (1958) and Drent (1959) yielded 
results which sometimes differed from one another but which were all, it as 
appears, incorrect.) Now, however, we have an arbiter for conflicts of intuition, 
for the correct division of (3.20) must yield results consistent with 9 2. 

The first five of the authors just named made the assumption that there was 
no interchange of energy between waves and current and thus obtained 

d - [E(cg+ U ) ]  = 0. 
ax 

(3.21) 

It is clear both from the results of I and from § 2 of the present paper that this 
assumption cannot be correct. 
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One might then argue that all the terms dependent on E belong properly to 
the wave-energy equation, and write 

ax C = O ,  (3.22) 

or, since the last term may be included with the mean flow, 

(3.23) 

Each of these equations (3.21), (3.22) and (3.23) yields results in conflict with Q 2. 
If, on the other hand, it is argued that the effect of the current variation on 

the wave energy is through the work done by the rate of strain against the 
radiation stress, then we have 

a 
-“E(c,+U)+S,U] = 0. ax 

a au 
-[E(c,+U)]+S,- = 0. 
ax ax 

Thus, in deep water, 
a au 

ax ax 
- [E(&+ U)]  +iE- = 0. 

(3.24) 

(3.25) 

Carrying out the differentiation at x = 0, where U = yc, and using equation 

aE 
-[&(1+2y)]+E[ ax 

(3.6), we have 

2( i+zy)  +?I”= 2 ax 0, 

4+cY iau 
( i+27)2c  ax , (E) = -  -_ 

E ax x=o 
whence 

or, since E is proportional to  a2, 

(3.26) 

(3.27) 

(3.28) 

in exact agreement with equation (2.41). 
It appears then that the correct assumption to make is equation (3.24), rather 

than the alternatives (3.21) to (3.23). We interpret this as follows: 
I n  a non-uniform current the energy of the waves may be regarded as being 

transported with the group-velocity plus stream velocity, provided in addition 
we suppose that the mean stream does work on the waves at a rate S,aU/ax per 
unit distance, where S, is the radiation stress. Equation (3.24) is then the expres- 
sion of the energy balance for the waves. 

An integral for the wave amplitude 

An exact integral of equation (3.25) is 

E(+c+ U ) c  = const., 

for on differentiating the above and dividing by c, we have 

(3.29) 

(3.30) 



540 

which by (3.6) is equivalent to (3.25). From equation (3.29) we deduce 
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and thence 

E - C,(C,+2UO) 
E , -  C(C+2U) ' (3.31) 

(3.32) 

This law of amplification is illustrated by curve (1) of figure 1. At the critical 
point, where U = -&, the amplification of the waves becomes theoretically 
infinite. I n  practice the waves may be expected to break, but the present small- 
amplitude theory becomes inapplicable before this point is reached. 
3.0 

2.0 

3 
8 

1.0 

- 025 0.0 0-25 0.5 0.75 1.0 
UJco 

FIGURE 1. The amplification factor a/ao for waves on a current U in the direction of wave 
propagation: (1) with vertical upwelling from below; (2) with horizontal inflow from the 
sides. [ao and c,, denote the values of a and c when U = 0.1 

We are indebted to a referee for pointing out that a result similar to (3.29) 
was derived in an  unpublished report by Kreisel (c. 1944, pp. 23-24). Kreisel 
started from the energy integral 

and assumed that (in our notation) 

(p = Uz-aceek~cos(kx-at), 
= a sin (kz - at), 

where C' = gk = (a-kU)' .  

Substituting in the integral and treating U ,  c, a and k as constants during 
differentiation, one finds eventually 

$aazc(c + 2U) = const. 
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(higher powers of a being neglected). Since IT is constant this agrees with (3.29), 
and indeed provides a physical explanation of that equation. The crux of 
Kreisel's argument is the assumption that contains no constant terms pro- 
portional to a2. This is true for deep water, but not in water of finite depth. 

The rules for the variation of wave-number and wave amplitude expressed by 
(3.13) and (3.32) may be regarded as generalizations of the results found in 8 2, 
the only additional assumptions being that k-laklax and a-laa/ax depend on 
the local values of U ,  c and aU/ax and are linearly proportional to aU/ax. 

The analysis of 5 2 is correct as far as the first power of /3kox only. I n  order to 
verify that (3.13) and (3.32) are correct to this order we write 

so that 
U - l+€ ,  - = Y ( l + € ) .  

UO CO 

U _ -  

(3.33) 

(3.34) 

Substituting in equations (3.13) and (3.32) and neglecting e2 we find, after some 

reduction, k - 
(3.35) 

k" 

of which (2.36) and (2.39) will be seen to be special cases. 

4. An application to tidal currents 
As an example of the application of the general formulae, and as an indepen- 

dent check, we apply the formulae to the case of surface waves on a tidal current, 
for which a solution was obtained independently in I. 

A short wave of mean amplitude a,, mean wave-number k ,  and frequency IT 

is assumed to be superposed upon a long (shallow-water) wave of amplitude a,, 
wave-number k ,  and frequency cr2, travelling in the same direction as the first. 
The conditions of the problem are that 

where h is the mean depth of water; also 

This last assumption ensures that the short waves are effectively in deep water, 
so that 

In  the case of tidal currents both h and ,u may be of order 10-4 in a typical case, 
but the ratio p/h,  = (k,h)*, need not be greater than about 2 in order for the 
condition (4.2) to be satisfied. 

Now let us reduce the long wave to  a steady current U by superposing on the 
whole system a uniform stream - (gh)t. Choosing the origin of x at a node of the 
longer wave, we have 

e--kih < 1. (4.2) 

CT, = (gk,)%, a, = (gh)$ k,; k,h = (,uU/A)~. (4.3) 

(4.4) 
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At x = 0 the stream velocity and the velocity of the short waves are given by 
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Uo = -(gh)*; c0 = (g/kl)*. (4.5) 

Thus, (4.6) 

(4.7) 
u- uo 

UO 
E = - = - -  a2sin k,x. 

h 
Also 

On substitution in (3.35), we find 

in agreement with equations (2.56) and (2.57) of I.* When p / A  is sufficiently 

(4.9) i 
large, then k a - = 1+--2sink,x, 

k0 h 

a 3 a  
- = 1 +- 2 s i n  k,x. 
a0 4 h  

5. Waves on a converging current: no upwelling 
I n  the last three sections we have been concerned with an entirely two-dimen- 

sional motion in which the transverse component of the mean current was zero; 
the increase in the stream velocity with horizontal distance was made up by a 
compensating current upwelling from below. We now study a somewhat dif- 
ferent situation in which the vertical component of current vanishes and the 
increase in the horizontal x-component U is compensated entirely by a horizontal 
in-flow V fkom the sides: 

-+- = 0. (5.1) 
au av 
ax ay 

The analysis for the asymptotic solution is identical with that in the previous 
case, Q 2, as far as equation (2.22). Now, however, instead of the potential (2.23) 
we must choose a potential #ol t o  represent a flow having zero vertical com- 
ponent, and satisfying the equation of continuity (5.1). We take 

401 = CO ko(x2 - y2) + D c ~ z ,  (5-2) 

and from (2.22) we see that the constant D has to be - 2y2 as before. Thus, 

COl = - 2 w ,  
and (2.26) still applies. 

(5.3) 

In  the equations (2.27) for the interaction potential, the additional terms all 
vanish identically, so that (2.28) is still valid; the only difference is that the last 
term ~ l o ~ 2 ~ o l / ~ x 2  vanishes, and so in place of (2.29) we have 

[2ik0( - 27 - 2y2) + 4ki X] (5.4) 
* In equation (2.57) of I, the second term in the curly bracket can be neglected, since 

h < p < l .  
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Now, on equating coefficients between (2.31) and (5.4), we find 

I y + 2y2 + 2ys k, = - 4k0-- 
(1+2y)2  ’ 

1; = 2ki- 
1 + 2y’  

1 
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Since the value of 1; is still the same, equations (2.34) to (2.38) are still applicable 
and in particular (2.38) shows that we have the same rate of change of the 
wave-number k as in the previous case. 

But, since k, has a different value, equation (2.41) must now be replaced by 

showing that the change in amplitude of the waves is different from the 
previous case. 

6. Physical interpretation 
The current U along the x-axis being as in $ 3 ,  the changes in wave velocity 

and wave-number which were derived in that section (by arguments depending 
only on kinematical considerations) are still given by (3 .6)  and (3.7).  This con- 
firms what was found in $ 5  concerning the change in wave-number. 

The change in wave amplitude, however, must be related to the equation of 
energy transfer. Now it was found in I that in the presence of a horizontal 
stream U = ( U ,  V ,  0) not necessarily in the x-direction, the mean transfer of 
energy across a vertical plane whose normal is n = (1, m, 0 )  is given by 

(6.1) 

where cu denotes the vector group-velocity, U’ denotes the stream velocity as 
modified by the mass-transport and S is a stress tensor. If the x-direction is the 
direction of wave propagation, then cu = (cu, 0,  0 ) ,  U‘ = U +  (Elpch, 0,  0 ) ,  and 

l? = E(cu + U )  . n + U .  S .  n + i phU’2(U’ .  n), 

where S, is given by (3.17) and 

S, = E e - i )  

Therefore a natural generalization of equation (3.14) is to assume 

V . [ E ( C , + U ) ] +  [ s,-+s E ql - = o .  

I n  other words, the divergence of the energy flux is exactly compensated by 
work done by the mean current against the radiation stress. In  deep water this 
becomes a a au - [E(& + U)] +- [EV] + &E% = 0. 

ax aY 
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By the symmetry of the flow about the plane y = 0, we see that, on the x-axis, 
aE/ay vanishes identically, and so making use of (5.1) we have 

- (&+U)++E i3E 
ax 

On substituting for ac/ax from (3.6), we find 

in exact agreement with (5.7). 
Equation (6.5) may also be written as 

which has the integral 
E(& + U)/c = const., (6.10) 

as may be verified in the same way as (3.28). Hence, in the present situation, 

and 

E C(C,+2UO) 
E, co(c+2U)’ 
-=- 

a = [-.-I C(C,f2Uo) 4 . 
a0 CO(C+2U) 

(6.11) 

(6.12) 

It will be seen that as the critical point is approached, a/uo -+ co as before. 
The amplitude variation corresponding to equation (6.12) is shown in figure 1, 

curve (2), compared with the corresponding variation in the case of no lateral 
flow. 

7. Waves on currents of arbitrary form 
To generalize our previous results, we note that S is a Cartesian tensor of 

rank 2, which we may write S,,; equation (6.2) gives S,  in diagonal form, when 
referred to  axes perpendicular and parallel to the local wave front. 

The velocity gradients aU/ax and a V/ay are also components of the symmetric 
rate-of-strain tensor 

1 aui aq. y = -  -+- 
ii 2 (a,, ax,), 

and the generalization of the interaction term in the wave-energy equation is 
S,,yij, which is, of course, an invariant. 

Hence the correct generalization of equation (6.4) for steady currents of 
arbitrarv form is 

v .  [E(cg + U)] +is,, 
For time-varying currents we assume 

aE au, a q  
- at + V . [E(c, + U)] + +f&(% + &) = 0. (7.3) 
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In  the case of purely two-dimensional motion (a/ay = 0), this reduces to 

aE a au 
-+-rE(cB+u)j+s,- at ax ax = 0, (7.4) 

an equation that was verified approximately in $ 5 of I. In  that paper it was not 
possible to distinguish between equation (7.4) and the same equation with 
a(S, U)/ax replacing S,aU/ax, since the difference, (aS,/ax) U ,  was negligibly 
small. However, the technique adopted in $ 4 of the present paper, whereby the 
long wave was reduced to rest by superposing a finite negative velocity, removes 
the ambiguity in the final term. 

Given the appropriate boundary conditions, equation (7.3) is generally suffi- 
cient to determine the variation in the wave-energy density E .  From this the 
variation in wave amplitude may be deduced on the assumption that the 
relation between amplitude and energy-density is 

E = +pqu2(i + Ppg),  

Fv = K( u2 + P), 

(7.5) 

where W denotes the vertical acceleration of a particle carried by the mean 
current.* (See $ 4  of I.) For steady currents we have 

(7.6) 

E E L  a2 (7-7) 

where K is the curvature of the path of the particle. If I@ is small compared with 
g then we may take 

as has been assumed throughout this paper. 
It may be mentioned that some experiments have recently been performed by 

Hughes (1960) on the interaction of waves and shear flows. These he has analysed 
using an assumption equivalent to (7.2), and his results tend to confirm the 
theory. 

2Pq Y 

8. Waves on a shearing current 
As a final example we shall apply the general equation (7.2) to the interesting 

case of waves traversing a simple horizontal current with vertical axis of shear. 
This was previously considered by Johnson (1947) without taking into account 
the transfer of energy between the waves and the current.t 

The stream velocity (0, V,O)  is supposed to be everywhere parallel to the 
y-axis, and also 

The wavelength and amplitude of the waves are supposed also to be independent 
of y. The angle which the waves make locally with the x-axis is denoted by 0 
(see figure 2). 

Purely kinematical considerations yield the following : since the wave- 
number in the y-direction (k sin 8) must be independent of x, we have 

k sin 8 = rn, (8.2) 

* It is assumed that the current is nearly horizontal. 
7 Some of the results of this section were obtained by Drent (1959) who, adopting a 

different approach, was led to make an assumption equivalent to (7.2) in this case. 
35 Fluid Mech. 10 
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a constant. Since the apparent velocity of the waves at right-angles normal to  
their crests is (c + V sin 8) and their wave-number is k,  the apparent angular 
frequency of the waves relative to a fixed point is 

k(c + V sin 8) = u, (8.3) 

also a constant. Thirdly, we have the relation connecting local wave-number 

kcc2 = 9. 03-41 
and velocity: 

4 
Y 

4 

FIGURE 2. Definition diagram for waves on a shearing current, showing the 
qualitative effect of the current (a) when V > 0, ( b )  when V < 0. 

From equation (8.3), by use of (8.4) and (8.2), it follows that 

or 

Then, from (7.4), 
(a - rn V)2 k =  

9 
7 

(8.8) mg and, from (7.2), sin8 = 

If c,, k,, 0, denote the values of c,  k ,  8 when the transverse velocity V vanishes, 
then we hrtve 

(U - M V)2’ 

1 - - C 
- 

i - ( v / c o ) s i n e o ’  

k 
- = [ 1 - ( V/c,)  sin 8,12, 
k0 

sin 8, 
[ 1 - ( V/c,)  sin 0,]2 * 

sin0 = 
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Since sin 8 cannot exceed unity, there is clearly an upper limit to V for which 
a solution exists: 

1 - (sin 8,)+ 
Y/c, < v-. sin 8, 

(8.10) 

At this upper limit 8 becomes equal to in, and the waves are totally reflected by 
the current. 

On the other hand, for negative currents V < 0, there is no kinematic limit 
to V. However, as V --f - 00, k becomes very large, that is to say the wavelength 
becomes very small (figure 2(b ) ) .  The angle 8 approaches zero, that is, the direc- 
tion of propagation becomes nearly normal to  the current. 

Now the vector group-velocity is given by 

cg = &C = (+c c0s 8, +c sin 8). (8.11) 

Hence equation (7.2) becomes in this case 

a a av 
ax aY ax -[E.&cos8]+-[E(&sin8+ V)]+$E-ccos8sinB = 0. (8.12) 

Since all derivatives with respect to y vanish identically, we find, on substitution 
from (8.6) and (8.8), 

(8.13) 

of which the integral is 
E cos 8 
(u - m V)2 = const., (8.14) 

or, from ( 8 4 ,  

The relative amplification of the waves is therefore given by 

E COB 8 sin 8 = const. (8.16) 

(8.16) 

This ratio is shown graphically in figure 3 as a function of V/c,, for various 
values of the initial angle 8,. 

Evidently the amplification of the waves becomes infinite both when 8 + 90” 
and when 8 --t 0. I n  the first case the infinity is not significant: it is due to the 
fact that the ray-paths intersect, and the corresponding line x = const. is a 
caustic. To the left of this line there are essentially two systems of waves, the 
incident and transmitted systems, while to the right of it there is a ‘shdow zone ’. 
In  the neighbourhood of such a line the ordinary approximations of ray optics 
do not apply; a higher-order theory, generally involving Airy functions, must be 
used. One may expect that the wave amplitude in fact remains finite even in the 
neighbourhood of the critical line. 

The second case, when 8 -+ 0, corresponds to the limit V --f -a. In  that case 
the infinity is genuine and is due mainly to the fact that the wavelength and 
wave velocity are so much reduced that, in order to maintain the energy flow 
in the x-direction, the amplitude must increase. In  practice the wavesmaybreak; 
but for no finite velocity V < 0 is the ratio a/ao theore t idy  infinite. 

35-2 
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We may note that it is possible for the component of stream velocity opposite 

gc+ Vsin8 < 0. (8.17) 

The waves are not thereby stopped, for the wave amplitude tends to be dimin- 
ished by a lateral stretching of the wave crests. 

to the waves to exceed the group-velocity: 

4 

3 

2 

1 

0 
-4  -3 -2  -1  0 1 2 3 

v/co 
FIGURE 3. The amplification factor for waves crossing a shearing current 1’ 

at an oblique angle 0, for various angles of entry 0,. 

9. Conclusions 
The amplitude of surface waves on non-uniform currents is affected by a non- 

linear interaction between the waves and the components of the currents; the 
coupling terms are proportional to the radiation stresses, and the general equation 
governing the transfer of wave energy is equation (7.3). 

Waves travelling on a non-uniform current 77 that varies in the direction of 
wave propagation undergo an amplification that is greater than previously 
supposed, and is dependent on whether the variation in current is made up by 
a small vertical upwelling from below or by a small horizontal inflow from the 
sides; this difference is illustrated by the two curves in figure 1. 

The amplification of waves on a transverse shearing current has also been 
calculated. Here the interaction between waves and current also produces an 
amplification different from that obtained by neglecting the interaction terms. 

The results show that the efficiency of a hydraulic or pneumatic breakwater 
should be affected not only by the surface currents directly opposing the waves 
but also by the transverse or vertical components of the secondary circulating 
flow, for these produce different effects on the wave steepening. The absolute 
limits to  the wavelengths that can be transmitted are still set by Taylor’s 
kinematical theory (1955). But for waves longer than the critical wavelength, 
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whether breaking occurs must depend on the amplification factor. We suggest 
that differences in the secondary circulation may account for some of the 
anomalies in past experimental work, both on models and on prototypes. 

Since the currents have been seen to do work on the waves, then we would 
expect the waves also to react on the currents. From (6.1), by conservation of 
the total energy, one would expect for steady currents 

V . [E(c, + U )  + S . U + (4phU”) U’ ]  = 0. 

Hence, on subtracting (7.2) and using the fact that Sij is symmetric, we have 

V .  [(QphU“) U’ ]  + - asij - - 0. axj 
A fuller account of equation (9.2) will be given subsequently. 
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